NextTrends fecha parceria inédita com Enate para orquestração de trabalho humano e digital

A NextTrends fechou uma parceria inédita com a empresa britânica Enate, que oferece uma plataforma para orquestrar a força de trabalho humana e digital em um só lugar. Com a parceria, a Enate marca sua estreia no mercado brasileiro e vem preencher um gap ocasionado pela evolução exponencial da automação. Confira a matéria publicada pela Revista Exame:

Orquestrar a força de trabalho humana e digital é novo desafio com avanço do RPA

Agilidade, eficiência, redução de custos, produtividade, controle e governança: esses são benefícios já amplamente conhecidos da Automação de Processos Robotizados (RPA na sigla em inglês) que, diariamente, levam organizações ao redor do mundo a transferir seus processos funcionais e cognitivos repetitivos para máquinas. Segundo a consultoria Gartner, a receita de software de RPA cresceu mais de 63% no último ano. Já uma pesquisa do Fórum Econômico Mundial diz que até 2025 os robôs devem estar presentes até mesmo nos conselhos administrativos de grandes empresas. À medida que a automação escala, um novo desafio se apresenta: a necessidade inexorável de gerenciar força de trabalho humana e digital, que podem ser necessárias em diferentes momentos dos processos de negócio.

Para resolver esse desafio, a NextTrends, empresa que atua em projetos de Data Intelligence, BI, Robotização, Inteligência Artificial e Dashboards, acaba de anunciar uma nova parceria com a Enate, empresa global com sede no Reino Unido que oferece uma plataforma de orquestração de serviço independente, projetada para gerenciar a força de trabalho digital e humana em um só lugar. Com a NextTrends, a Enate marca sua estreia no mercado brasileiro.

“Trazer a Enate para o Brasil é um grande passo que estamos dando para atender nossos clientes em suas necessidades mais atuais, oferecendo tecnologia de última geração e confiabilidade, características da Enate reconhecidas mundialmente. Com esta nova solução em nosso portfólio possibilitamos que as empresas escalem seus sistemas automatizados e simplifiquem seus processos de ponta a ponta, não mais de maneira isolada, cobrindo os gaps e incluindo de fato o que elas têm de maior valor: as capacidades humanas”, diz Ricardo Rego, Diretor Executivo da NextTrends.

A plataforma Enate combina funcionalidades como gerenciamento de tickets, gerenciamento de casos, gerenciamento de trabalho e capacidade e recursos de fluxo de trabalho, juntamente com relatórios de desempenho apresentados via dashboards em tempo real. Trata-se de uma plataforma aberta com rápida implementação, na modalidade SaaS (Software como Serviço), que permite introduzir novas tecnologias facilmente. A proposta é transformar negócios em qualquer estágio de automação: força de trabalho humana, híbrida, automação de processos robóticos (RPA), ou usando novas tecnologias como Inteligência Artificial (IA).

“O mercado de tecnologia é extremamente dinâmico e ter essa capacidade de acompanhar as mudanças na velocidade que elas acontecem é o grande diferencial da NextTrends. Estamos muito felizes em tê-la em nosso ecossistema de parceiros, que reúne uma comunidade única com conhecimento e know how do setor. Juntos somamos forças para aproveitar todas as oportunidades que o Brasil oferece”, conclui Jane Youdell, Chefe de Parcerias da Enate.

Veja também: Como o RPA está evoluindo com a IA: em 5 etapas

Fonte: Revista Exame

Como o RPA está evoluindo com a IA

Como o RPA está evoluindo com a IA: em cinco etapas

Com o recente lançamento do primeiro Quadrante Mágico do Gartner para RPA, todos os 18 fornecedores cobertos estão esperando um aumento nos negócios, esse é o poder do Gartner.

Em termos de plataformas centrais e sua capacidade de automatizar o trabalho chato, mundano e repetitivo que os funcionários do escritório odeiam; para permitir que esses funcionários se concentrem em tarefas de maior valor e mais gratificantes, todos os 18 têm essa capacidade em menor ou maior grau.

Além disso, dado que a adoção do RPA nas empresas da Fortune 500 em todo o mundo está se aproximando de 100%, (o Uipath tem 60% dessa comunidade como clientes), o que as pessoas estão interessadas é como o RPA pode ser combinado com inteligência artificial (IA) para fornecer benefícios adicionais aos seus programas de automação e ajudá-los em suas jornadas de transformação digital – uma jornada, a propósito, que não tem um ponto final.

Veja também Como você sabe se o que você está comprando ou construindo é verdadeiramente Inteligência Artificial?

O problema com a IA é que ela é complicada e está em movimento rápido. Portanto, tentei simplificá-la em quatro áreas. Cada uma delas é representada por um “entendimento” fornecido por ferramentas de IA que foram incluídas no RPA para obter o máximo de benefícios de ambos os tipos de tecnologia.

Ofereço aqui a você cinco etapas sobre o que é importante e por quê:

1. Compreensão visual

Alguns dos primeiros adotantes de RPA foram as empresas de terceirização, pois viram que a automação poderia reduzir seu custo para atender seus clientes de uma forma que a arbitragem trabalhista estava fazendo cada vez menos. No entanto, eles tinham um problema: era extremamente improvável que eles tivessem acesso aos aplicativos de seus clientes – os sistemas e a tecnologia que os clientes estavam usando para administrar seus negócios. Em vez disso, as empresas de terceirização de processos de negócios (BPO, business process outsourcing) tinham que acessar os sistemas de seus clientes sobre a (geralmente) Citrix.

As empresas de BPO certamente poderiam usar codificação e macros para automatizar muitas das tarefas que receberam de seus clientes. Contudo o que eles precisavam era trabalhar um bitmap – uma imagem – toda vez que o cliente atualizava, corrigia ou alterava seus sistemas. Isso quebrou imediatamente todas as automações que a empresa de BPO havia construído e tiveram que recomeçar. Um processo demorado e caro.

Junto veio a RPA em 2015, ou por aí, e essas plataformas usaram âncoras e outros elementos para permitir que a automação sobrevivesse a quaisquer alterações feitas nos sistemas subjacentes para que não quebrassem todas as vezes.

Depois de quatro anos, agora as melhores plataformas de RPA estão usando a visão computacional (uma ferramenta de IA) para que o sistema entenda todos os elementos em todas as telas exatamente da mesma maneira que um humano. Isso permite que os clientes de RPA (fornecedores de BPO também) criem uma automação segura, sabendo que não importa quais alterações são feitas, o robô será capaz de “ver” e “entender” o que está vendo.

2. Compreensão de documentos

O papel não vai morrer.

Toda empresa ainda está inundada de documentos, arquivos, faturas, ordens de compra, currículos e outros pedaços de papel. A ideia de um escritório sem papel para a maioria é um sonho distante.

Essa realidade já foi abordada anteriormente com a tecnologia de digitalização: afinal, se você conseguir digitalizar as informações no papel, poderá usar um robô para lidar com isso. Não? Não.

Documentos digitalizados são apenas parte do que é necessário. Para que o sistema “compreenda” o que está olhando e aloque esse documento ao robô ou à pessoa certa, o sistema precisa usar vários recursos de IA: reconhecimento de entidade denominada, análise de sentimento, reconhecimento inteligente de caracteres ópticos, linguagem natural compreensão, traduções, aprendizado de máquina e assim por diante.

Os fornecedores de RPA têm trabalhado nas tecnologias inteligentes de OCR (reconhecimento óptico de caracteres) com operações comerciais, como a Abbyy, e estão utilizando cada vez mais os desenvolvimentos em outras áreas criadas por empresas como Microsoft e Google. O que é interessante sobre esses dois últimos é que eles abriram a maioria dos elementos necessários para a compreensão do documento. Isso significa que eles estão livres para usar e, assim, eventualmente, todo o software os usará.

Para as empresas de RPA, isso significa que eles estão usando a melhor tecnologia possível para permitir que os clientes manipulem os dados não estruturados armazenados em suas pilhas de papel.

3. Compreensão do processo

Quais processos devem ser automatizados? Estou de acordo com a Automation Anywhere quando eles disseram que “qualquer processo que possa ser automatizado, será”. Mas por onde começar?

Identificar quais processos automatizar primeiro e a ordem na qual eles são feitos até agora tem sido o foco do centro de automação de excelência (COE) junto com os especialistas no assunto em cada unidade de negócios ou área de processo. Agora, os fornecedores de RPA estão vendo cada vez mais o valor da tecnologia de mapeamento de processos, como Celonis e Minit, que as equipes de Lean Six Sigma e de melhorias de processos utilizam para identificar fluxos de processos, gargalos, exceções e assim por diante. O objetivo é ilustrar o caminho ótimo através de qualquer processo para maximizar a eficiência.

Os fornecedores de RPA, como o UiPath, estão trabalhando para alterar o output da atividade Celonis de uma imagem de um mapa de processo para um script XAML; um script XAML que se torna um robô. Então, em termos simples, o que estamos desenvolvendo são robôs autoconstruídos.

O sistema irá observar o que o usuário humano faz, identificar o caminho ideal onde há atividade repetitiva e depois criar um robô para fazê-lo; automaticamente. Este é o final do jogo quando se trata de facilidade de uso para este tipo de tecnologia.

Além disso, há uma segunda parte para processar a compreensão: entender o que acontece quando (inevitavelmente) os processos mudam.

Você deve se interessar também por: Inteligência Artificial: o avanço do backoffice nas empresas

Todos os processos mudam com o tempo. As regras de negócios mudam; a tecnologia é corrigida ou substituída, as prioridades de negócios se alteram. Isso quebra robôs. Então, os fornecedores de RPA estão agora olhando para o aprendizado de máquina (ML) para capturar qualquer aumento nas exceções – um sinal claro de que algo mudou – e então a plataforma de automação irá reconfigurar o robô para atender às novas necessidades do processo. Estes são robôs auto-curáveis; e ainda estão longe.

4. Compreensão conversacional

Por fim, os robôs serão controlados por voz.

Digamos que você trabalhe em um banco e seu robô não entenda o que fazer com um determinado documento ou pagamento; ele seria sinalizado como uma exceção para o usuário humano e, hoje, o usuário lidará com isso manualmente ou voltará ao desenvolvedor do RPA para alterar o robô para que ele saiba o que fazer no futuro.

Não é isso que vai acontecer em breve.

Se o sistema e os robôs tiverem uma compreensão conversacional, você será capaz de se comunicar com o robô em linguagem natural: no caso do funcionário do banco, tudo o que eles terão a dizer é “OK robô, se você ver esse tipo de documento, siga na conta do Wells.” O robô, é claro, tem que entender que ‘Wells’ neste caso significa Wells Fargo; e não buracos no chão com água no fundo ou uma cidade em Somerset no Reino Unido (que também são ambos ‘Wells’).

O entendimento conversacional, portanto, precisa do processo ou de ontologias específicas do setor para permitir que a compreensão da PNL e da linguagem natural funcione. No caso do UiPath, a empresa está trabalhando com vários fornecedores neste espaço, incluindo Kore.ai e Humley.

5. RPA e IA irão desaparecer

O passo 5 é diferente; não se trata de uma tecnologia de IA, mas o corolário do que acontece quando os quatro aspectos anteriores: visual, documento, processo e conversação são totalmente implementados nas plataformas de RPA. Eles vão desaparecer.

Parece contraintuitivo que todo esse trabalho leve ao desaparecimento da RPA e da IA, mas acho que é exatamente isso que vai acontecer. No entanto, não irá desaparecer por falta de utilização: desaparecerá porque será usado em toda a parte!

Bill Gates, no início dos anos 80, imaginou uma época em que todas as residências e todas as escrivaninhas teriam um computador. Hoje, imaginamos uma época em que todo trabalhador de escritório terá um robô; assumir o trabalho que eles não querem fazer (o material chato e repetitivo) e ajudá-los a fazer o trabalho que eles querem fazer (aumentando sua eficiência – e felicidade).

Neste estágio, a RPA e a IA serão consideradas tão naturais quanto o trabalho em si e efetivamente se tornarão invisíveis.

Então lá vamos nós, cinco etapas que você pode referenciar quando alguém lhe pergunta como o RPA e a IA estão se unindo.

*Escrito por Guy Kirkwood, Chief Evangelist at UiPath

Fonte: Linkedin Pulse

Inteligência Artificial: o avanço do back office nas empresas

Inteligência Artificial: o avanço do back office nas empresas

A Inteligência Artificial (IA) está promovendo alguns dos progressos mais notáveis no back office de empresas de todos os tipos. O back office é onde entram as operações de negócios que suportam as principais áreas da organização voltadas para o cliente. Nele estão enquadradas atividades como finanças e contabilidade, recursos humanos, operações da cadeia de suprimentos e logística, TI, suporte e todas outras peças da empresa que são necessárias para que o resto da operação funcione sem problemas. É no back office que tudo acontece, mas nada diretamente relacionado com os clientes. Isso pode ser qualquer coisa, desde pesquisa, agendamento de recebimento e realização de pagamentos ou gerenciamento de instalações. Muitas dessas operações envolvem atividades humanas e processos de negócios que podem ser aprimorados e acelerados por meio do uso de sistemas e tecnologias inteligentes habilitados por IA.

Melhorando os processos: 1. Ordens de pagamento com Inteligência Artificial

Um dos lugares onde a Inteligência Artificial pode melhorar as coisas é através do processo de ordem de pagamento. Esse processo envolve tudo, desde um cliente fazendo um pedido até o recebimento do pagamento desse pedido. Para as empresas receberem o pagamento, elas geralmente precisam emitir, enviar, receber e processar faturas. Isso envolve diferentes processos e sistemas, tanto aqueles diretamente relacionados ao pagamento, como aqueles relacionados a contas a receber. A tecnologia de contas a receber impulsionada pela IA está contribuindo para que as empresas recebam seus pagamentos dentro do prazo.

Surpreendentemente, muitas faturas ainda são enviadas em papel, um grande risco! As faturas em papel podem estar repletas de erros, inconsistências e informações ausentes. Erros que podem ser corrigidos por serviços baseados em Inteligência Artificial, tornando os processos mais eficientes. Os sistemas inteligentes ajudam a resolver disputas, examinam e processam solicitações de reembolso e conseguem identificar itens deixados de lado. Isso acontece devido à capacidade inata dos sistemas de IA de identificar padrões e anomalias em transações e documentos.

Os sistemas habilitados por IA também são capazes de identificar os melhores clientes: quem paga no prazo correto, compra com frequência ou que tipos de produtos compra. Munidas destas informações, as empresas podem criar incentivos personalizados para esses clientes. A análise baseada em aprendizado de máquina (Machine Learning) também ajuda a identificar problemas/falhas nos produtos. A partir de então, é possível conversas com clientes insatisfeitos, tornando o processo mais fluido para todos os envolvidos. Usar a Inteligência Artificial permite um tom sempre agradável para melhorar a experiência do cliente.

Melhorando os processos: 2. Da compra ao pagamento (Procure-to-pay)

A segunda grande onda de inovação nas operações de back office promovida pela IA abrange sistemas e processos de purchase-to-pay (todo o ciclo de compras). As empresas precisam comprar e adquirir uma grande variedade de itens, desde equipamentos de escritório até suprimentos de fabricação. Os sistemas baseados em IA estão acelerando e tornando mais eficientes e confiáveis ​​os processos que as organizações usam para adquirir e pagar produtos e serviços. Eles também garantem a conformidade com as políticas corporativas e regulatórias.

As ferramentas de software habilitadas com Inteligência Artificial podem ajudar a detectar anomalias, identificar dados relevantes para aprimorar os sistemas de aquisição, atribuir itens de aquisição às pessoas corretas para aprovações e agilizar os processos de compras. A IA pode ajudar a transformar o processo interno de compras em operações eficientes e de alto poder que reduzam ou eliminem gargalos, identifiquem oportunidades de descontos, consolidem as compras entre departamentos, reduzam desperdício, fraude e abuso e mantenham as compras em conformidade com várias regras.

À medida que esses sistemas habilitados para Inteligência Artificial se tornam mais integrados ao local de trabalho, eles aprendem com o tempo, tornando-se uma força inteligente personalizada por trás da cena. Os sistemas de compras inteligentes podem aprender como são os pedidos típicos e o que não é típico em uma determinada empresa ou organização. As aplicações são especialmente benéficas para grandes organizações com requisitos de compra complicados. Organizações que compram grandes quantidades de itens e diferentes tipos de produtos e serviços podem se beneficiar de um sistema inteligente para manter uma vigilância constante sobre os processos de aquisição. A capacidade dos sistemas habilitados por IA de reconhecer padrões ajuda a identificar quando as coisas estão sendo compradas, esgotadas ou não utilizadas com frequência suficiente.

Tornando a automação do processo mais inteligente com Inteligência Artificial

Os sistemas de IA também são bons em realizar tarefas repetitivas que requerem elementos da capacidade cognitiva humana. Ferramentas de automação de tarefas repetitivas estão fazendo incursões significativas nas empresas. Adicionar aos sistemas a capacidade de entender documentos, ouvir mensagens de voz, interagir com clientes usando interfaces conversacionais ou usar a tomada de decisão preditiva tornará essas ferramentas de automação mais inteligentes.

As empresas querem que os sistemas de IA e de aprendizado de máquina executem tarefas até então realizadas por pessoas que são muito tediosas ou demoradas. Um exemplo: no passado, uma pessoa tentaria descobrir por que faturas não foram pagas e solucionar junto ao consumidor. Os métodos utilizados muitas vezes são inadequados e ineficientes. A IA pode mudar a forma como as pessoas lidam com a cobrança de dívidas em seus negócios e agilizar o processo. Ela também pode ajudar a aprender a melhor maneira de alcançar pessoas ou organizações, aumentando as chances de sucesso.

Veja também: Você sabe o que é machine learning? Entenda tudo sobre esta tecnologia

Nesse mesmo sentido, a IA melhora a conformidade, especialmente em setores altamente regulamentados e que precisam manter uma documentação meticulosa. A IA mantém essas empresas em conformidade com os requisitos em evolução ou com os cenários variados em que se enquadram. Ela pode, por exemplo, executar auditorias automáticas em sistemas ou sinalizar e filtrar conversas contra as políticas da empresa. A IA também usa o reconhecimento da linguagem natural para interagir com funcionários, fornecedores, clientes e parceiros. Assim, ela possibilita melhorar as operações e acelerar a conformidade com os regulamentos.

Os recursos analíticos da IA ​​ajudam a pesquisar e examinar os dados da empresa para fornecer informações sobre a “agulha no palheiro”, buscando os registros e fornecendo insights automáticos. Sistemas inteligentes baseados em IA também estão ajudando com o gerenciamento de funcionários. Como? Monitorando o engajamento, a interação e o comportamento dos funcionários. Essa é uma forma de garantir que os padrões e as regras corporativas sejam seguidos para evitar qualquer repercussão negativa. Esses sistemas de Inteligência Artificial também estão ajudando a tornar os colaboradores mais eficientes, oferecendo suporte interno por meio de chatbots e outras formas de suporte interno. Os chatbots de autoatendimento com foco no colaborador estão provando ser muito valiosos, fornecendo assistência para consultas relacionadas a RH ou suporte de TI.

Os sistemas de Inteligência Artificial estão se tornando rapidamente uma parte indispensável do ambiente de backoffice corporativo. Eles servem como um assistente aprimorado que pode reduzir significativamente a carga de trabalho de pessoas, especialmente em multinacionais. A IA está fornecendo eficiência e automação muito necessárias para áreas que antes exigiam enorme quantidade de atividades humanas de alta importância, mas de baixo valor.

Fonte: Forbes (traduzido e adaptado)

Microsserviços + RPA: você vai querer pegar este atalho

A expressão “tempo é dinheiro” nunca soou tão verdadeira como agora. Hoje não dá para perder muito tempo para lançar uma aplicação, um produto ou um serviço novo no mercado, a concorrência te engole antes! Mas como ser mais ágil e eficaz? Sabe aquela velha história (não tão velha assim) de fatiar entregas que as metodologias ágeis têm como base? Ela funciona! Os microsserviços seguem mais ou menos essa linha. E podem ser o pulo do gato para a transformação digital da sua empresa, permitindo que você aproveite as novas tendências: Inteligência Artificial, Machine Learning, Robotização de Processos (RPA), entre outras.

Microsserviços são uma abordagem de arquitetura que decompõe uma aplicação por funções básicas. Cada função é chamada de serviço (por isso o nome!) e pode ser criada e implantada de maneira independente. O que isso significa em termos práticos? Significa que cada serviço individual pode funcionar ou falhar sem comprometer os demais. Assim, as aplicações podem ser desenvolvidas, testadas e implantadas mais facilmente. A técnica simplifica a interface com sistemas legados e viabiliza o acesso a dados em tempo real, além de facilitar a integração com empresas parceiras. Este é o atalho!

A arquitetura de microsserviços abrange a ideia de API – Interface de Programação de Aplicativos (nós falamos sobre ela aqui), ideal para habilitar o suporte de um aplicativo para uma diversidade de plataformas, seja na web, no celular ou até em objetos dotados de Inteligência Artificial. E o que isso quer dizer? Que ficou muito mais fácil e acessível (inclusive financeiramente) adotar as mais novas tecnologias para atingir seus objetivos de negócio!

A NextTrends, por exemplo, trabalha com arquitetura de microsserviços para o desenvolvimento de robôs que tornem possível automatizar com inteligência suas consultas a dados e seus processos (RPA). Plug and play – fácil e rápido de integrar com suas soluções e sistemas. A cobrança pode ser feita por chamada a cada API, com um preço que cai conforme o volume.

Ainda não se convenceu? Pense bem, o motorista que recebe um chamado pelo aplicativo não vê sentido em digitar o endereço no assistente de rotas. A opção de check-in pela internet libera viajantes de enfrentar longas filas em aeroportos. Pacientes preferem agendar consultas via web, do que ligar pessoalmente. Enfim, muitas vezes, a automação está nos detalhes e faz todo mundo ganhar tempo. Ainda assim, milhares de profissionais continuam gastando horas com Alt+tab e Crtl+C/Crtl+V, transferindo informações de um sistema a outro ou pesquisando/validando dados cadastrais, por exemplo. Faz sentido?

Quem se estabelecer sobre arquiteturas de nuvem, microsserviços e outros padrões criados para interoperar levará vantagem. É só uma questão de escolha.

API’s Economy: seu novo driver de negócios

Em 2017, a revista Forbes declarou o “Ano da economia da API”. Desde então, o assunto ocupa posição privilegiada dentro das estratégias de transformação digital das empresas. E o que você ou sua empresa tem a ver com isso? Por que é importante entender o que são APIs? Quais os benefícios práticos? Interessa mesmo para quem não é da área de TI? Vamos responder a todas estas perguntas aqui, neste post!

Para começo de conversa, vamos falar sobre o que é uma API. Tecnicamente, API é a sigla de Application Program Interface, que nada mais é do que um conjunto de rotinas, protocolos e ferramentas que conectam um software a outro. Traduzindo, as APIs permitem que dois softwares conversem entre si, ainda que eles tenham sido desenvolvidos com tecnologias e linguagens diferentes. É como uma “ponte” que liga as duas pontas: seus serviços internos a seus consumidores de serviços externos.

São vários os exemplos (e talvez você nem imagine o quanto faz parte deste mundo!). Olha só, quando você acessa um site e se depara com o mapa do Google indicando a localização da empresa, isso é uma API. Sabe as milhas que você acumula no cartão de crédito? São APIs. A consulta de CEP no Mercado Livre para cálculo de frete ou para validar se o endereço de entrega existe. Adivinha? APIs! A pesquisa por hotéis no Tripadvisor, por passagens aéreas no Decolar, melhores preços no Buscapé….uma infinidade de conexões ao seu redor e você nem tinha se dado conta.

Todos esses exemplos geram lucro para as empresas envolvidas e foi isso o que a Forbes quis dizer quando utilizou a expressão “API’s Economy”. Não se trata mais de uma ferramenta técnica que interessa somente a desenvolvedores, mas sim de uma fonte de valor estratégico na economia digital atual, que permite reunir parceiros de ecossistema.

Com as APIs você consegue ter acesso a diversos dados, como o histórico de residência de seu consumidor, suas atividades nas redes sociais, sua carteira de motorista, seu CPF, informações bancárias e muito mais. Como? Conectando o seu sistema com bases de instituições como Detran, Receita Federal, Febraban entre outras. Por isso, estrategistas, líderes de marketing e executivos de parcerias que buscam alcançar um novo nível de diferenciação de mercado passaram a se interessar pelo assunto.

Big Data Analytics: veja como a análise inteligente de grandes volumes de dados pode trazer informações valiosas para o seu negócio

O aumento de demanda por interação móvel faz da internet uma plataforma de relacionamento carregada de dados, dados que podem ser captados pelas empresas por meio de APIs e transformados em valor, seja na forma de um produto específico, seja na forma de conhecimento para ativar um outro produto.

De acordo com o estudo Evolution of the API economy, da IBM, quase 70% das companhias estão buscando aumentar suas parcerias externas e voltando-se para as APIs para ajudar a criar essas pontes para outras organizações e desbloquear os dados e recursos exclusivos de cada parceiro.

Outra vantagem é que as APIs permitem que empresas de todos os portes utilizem serviços até então considerados inacessíveis, caros e complexos para se desenvolver internamente, como a computação cognitiva e a Internet das Coisas (IoT), também citados no estudo da IBM. Isso acelera o seu processo de inovação.

Saiba mais como podemos ajudá-lo na busca por dados e na integração com outras fontes.

pt_BRPortuguese
pt_BRPortuguese